Orbital and spin physics in LiNiO2 and NaNiO2

نویسندگان

  • Albert J W Reitsma
  • Louis Felix Feiner
  • Andrzej M Oleś
چکیده

We derive a spin-orbital Hamiltonian for a triangular lattice of eg orbital degenerate (Ni) transition metal ions interacting via 90 superexchange involving (O) anions, taking into account the on-site Coulomb interactions on both the anions and the transition metal ions. The derived interactions in the spin-orbital model are strongly frustrated, with the strongest orbital interactions selecting different orbitals for pairs of Ni ions along the three different lattice directions. In the orbital ordered phase, favoured in mean field theory, the spin-orbital interaction can play an important role by breaking the U(1) symmetry generated by the much stronger orbital interaction and restoring the threefold symmetry of the lattice. As a result the effective magnetic exchange is non-uniform and includes both ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic interactions still dominate, this offers yet insufficient explanation for the absence of magnetic order and the low-temperature behaviour of the magnetic susceptibility of stoichiometric LiNiO2. The scenario proposed to explain the observed difference in the physical properties of LiNiO2 and NaNiO2 includes small covalency of Ni–O–Li–O–Ni bonds inducing weaker interplane superexchange in LiNiO2, insufficient to stabilize orbital long-range order in the presence of stronger intraplane competition between superexchange and Jahn-Teller coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local structure of LiNiO2 studied by neutron diffraction

The nature of the magnetic state of LiNiO2 has been controversial. In this compound Ni spins sS=1/2d form a triangular lattice with the possibility of magnetic frustration, but the exact state of spin correlation has not yet been known in spite of the extensive research work. A factor that complicates understanding of the magnetic state is the orbital state of Ni3+ which is a Jahn-Teller sJTd i...

متن کامل

بررسی خواص مغناطیسی تک اتم‌های فلزات واسط 3d افزوده شده بر روی بورن نیتراید شش گوشی دوبعدی

In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magne...

متن کامل

Magnetic structure of Li 1 − xNi 1 + xO 2

We study the magnetic structure of layered Li1−xNi1+xO2 and propose a new scheme: the AF interaction between the excess Ni in the Li layers and the Ni ions in the Ni planes, gives rise to the formation of ferrimagnetic clusters, which control the physics of these systems. The values of the different interactions are estimated from a mean field calculation in the high temperature limit. For the ...

متن کامل

Spin and Isospin Asymmetry, Equation of State and Neutron Stars

In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.

متن کامل

Solitonic States in Organic Conducting Polymers

In a typical solitonic distribution, the soliton density is distributed over the entire moleculeand the present work shows how its density can be decomposed into solitonic and antisolitoniccomponents. It is found that there exists a unique electron as soliton over the anionicnanoconductor, while there are many other solitons and antisolitons. The solitonic states are furtherdecomposed to the ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005